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Generalized Landauer equation: Absorption-controlled diffusion processes
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The exact expression of the one-dimensional Boltzmann multiple-scattering coefficients, for the passage of
particles through a slab of a given material, is obtained in terms of the single-scattering cross section of the
material, including absorption. The remarkable feature of the result is that for multiple scattering in a metal,
free from absorption, one recovers the well-known Landauer result for conduction electrons. In the case of
particles, such as neutrons, moving through a weak absorbing media, Landuer’s formula is modified due to the
absorption cross section. For photons, in a strong absorbing media, one recovers the Lambert-Beer equation. In
this latter case one may therefore speak of absorption-controlled diffusive processes.
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PACS numbes): 05.70.Ln, 72.10.Bg, 03.65.Sq

I. INTRODUCTION fact that Eq.(1) may also be derived from a strictflassical
transport equation. Indeed, in the present paper we derive the
One of the problems that has most attracted the attentiohandauer resul{l) from the 1D version of the Boltzmann
of solid state physicists in the past three decades is that afansport equation. This derivation implies that the Landauer
mesoscopic diffusion in nanostructures. This process is dugesult is not only an incoherent, but alsclassicalresult.
to the multiple scattering of electrons with the lattice forming  On the other hand, it is well known that the Boltzmann
the material. The field was pioneered by Landgudr who  transport equation can also be used to study the diffusion of
in 1957 obtained his already famous formula for the diffu-particles in materials having absorption. For example, in the
sion coefficient for conduction electrons in a one-case of photon migration where absorption is strong, astrono-
dimensional(1D) solid, namely, mers have long been using the 1D Boltzmann case, under the
name of two stream theory, to study radiation transfer in a
stellar atmospherg9,10]. Another example is the case of
neutrons diffusing with weak absorption in the moderator of
a neutron chain reactor. The Boltzmann equation has been a
wherec is the Fermi velocity for the electrons amdis the  cornerstone in the design of nuclear reacfdrk,12.
length of the solid. The solid, considered as a single complex For neutrons and photons the presence of an absorbing
scattering center, has multiple-scattering transmission and reross section in the diffusion process is rather relevant. And
flection coefficientsT andR, respectively. in fact, for absorption dominated diffusiofphotons, one
Although many of the derivations of Edl) are of a  would expect that the Lambert-Beer law, which describes the
guantum-mechanical natufg], however, the quantum deri- absorptionC of light passing through a slab of material of
vation assumes that the potentials are measured some d&zex, given byC(x) =exf —ax] and regarded as one of the
tance away from the scatterers and it assumes that this melasic laws in photochemistfyL3,14], holds true.
surement is incoherent, which implies not taking into In the language of transmission and reflection coefficients
account the interference of the incident and the reflected and R, we know that for conduction electrons, where no
wave. Once the interference is neglected, the result so olabsorption is present,+R=1 due to particle conservation.
tained can, therefore, also be derived with incoherent stoHowever, in the passage of particles through an absorbing
chastic processes as it has been shown several fBdls medium,T+R<1 and, in fact, we could define the absorp-
Thus, the ratioT/R appearing in Eq.(1) is not a fully tion coefficientC at the end of the sample &L)=T.
guantum-mechanical result, a fact that has long been recog- Examination of these facts leads immediately to one ques-
nized by many authorgb—8|. tion. Since the processép electrons scattering in a metal,
However, not all incoherent processes are, necessarily, iaccording to the Landauer theory, atid particle diffusion
agreement with classical mechanics. What is surprising is thin an absorptive mediuniphotons and neutrons, for ex-
ample, can both be regarded as classical diffusive scattering
processes against fixed targets, namely a LorentZ Hals

D= LT 1
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the same general 1D equation, which stems from the exagarticles are denoted b{,(x,t)=f(x,+,t) and P,(x,t)
solution of the Boltzmann transport equation with absorp=f(x,—,t), respectively. Along the axis, the 1D Boltz-
tion. This general result leads to a formula containing a remann equation then becomes a system of two equations writ-
lationship between the diffusion coefficiebt the multiple- ten as

scattering coefficientd’ and R, and the absorption cross

sections, ,; we call this general result the “generalized Lan- 19 _ o

dauer eqa:Jation.” We show that in the absorption-free diffu- cat T ax| PR (Pam P 2aPy, ®
sion limit it will reduce to the Landauer result Eql),

whereas in an absorption-dominated process, passage of pho- 19 9

tons through matter yields the Lambert-Beer equation. For i ax|P2= 2N (P1=P2)—%4Pa. (6)

neutrons with weak absorption, for example, the generalized
Landauer equation gives an explicit—absorption-Both Egs.(5) and(6) are called the two stream theory, and
dependent—correction to E(L). are used by astrophysicists in connection with radiation
The new feature of this calculation is that it gives a uni-transfer[9,10).
fied picture of what one might think are unrelated results, The set of equation&) and(6) may be rewritten in terms
and we can visualize them now as particular cases of aof two new functions: the total densitp(x,t)=P;(x,t)
absorption-controlled diffusion process. +Py(x,t) and its associated curreni(x,t)/c=Pq(X,t)
—P,(x,t). The new set of equivalent equations is
Il. BOLTZMANN'S TRANSPORT EQUATION

an  4J
Let us consider Boltzmann's transport equation free of EJF 5=—c2an, (7)
external force$11],
19 B c on 14
st egrad +3+ 3, f(r Q) =osasslx e al ®
_ , , , Equation (7) is simply the 1D continuity equation; it ex-
_f dQ’f(r, Q1) 22— Q). (2) presses, due to absorption, the nonconservation of mass.

Equation (8) is the 1D Maxwell-Cattaneo equatidri6],
Heref is the distribution of independentjonoenergetipar-  which is clearly a departure from Fick’s law and has impor-
ticles moving in a homogeneous and isotropic medium. Elastant physical consequences. Thl dt term is the distinctive
tic collisions are only against fixed targets. The constanproperty of the mesoscopic diffusion regime; for short times
speed is denoted by, and {2 is a unit vector in the direc- it describes the correct ballistic diffusion regime with con-
tion of motion of the particlesX(Q’'—€) denotes the stant velocity, and for long times it leads to the hydrody-
macroscopic scattering cross section defined as the micrgramic diffusion regime. Equation&) and (8), which are
scopic, or atomic, differential cross section multiplied by theexactin 1D, are only the ‘P, approximation” of the spheri-
density of target atoms. For isotropic scatteririgy(Q’ cal harmonic expansion method in 301,12
— ) depends only on the deflection andglg between the Equation(8) shows that the 1D Boltzmann diffusion co-
Q' andQ directions, that is, cog,=Q-Q'. The quantities efficient is given by the well known result
2 and 2, denote the total macroscopic scattering and ab-
sorption cross sections, respectively, D= c 9

S 2300

We call this diffusion coefficient docal result, because it
involves microscopic single-scattering cross sections
In order to derive a generalized Landauer equation, wé>,,,3r). The Landauer equatigil), on the other hand, is a

need the one-dimension&lD) version of the Boltzmann nonlocalresult since it involves coefficients (R) for mul-
transport equation. A strict 1D transport theory has only twatiple scattering in the bulk of the solid. Therefore, to get the
directions of motion: “right” and “left.” This means that generalized Landauer equation we need to express the single-
the 1D velocity directiorf2 has only two components1 or  scattering cross section{,>) as a function of the

—1, written (+,—) for short. Then, the scattering cross sec-multiple-scattering coefficientsT(R).

tion has only two possibilities: forward or backward scatter-

ESEJ dO3S(Q —Q).

ing 6p=(0 or 7). We define IIl. BOLTZMANN'S MULTIPLE-SCATTERING
COEFFICIENTS WITH ABSORPTION
t525(+—>+)/25:25(——>—)/25, 3
Let us consider a slab of scattering material of $izdo
r=3(+——-)2=3(——+)I2, (4)  find the multiple-scattering transmission and reflection coef-
ficients (T,R) of the whole slab, we proceed just as is done
as the microscopic forward and backwdftransmission”  in quantum mechanics; we assume a steady-state regime,
and “reflection”) single-scattering probabilities, respec- with a unitary incoming flux of particles incideonly at the
tively. These probabilities are properly normalizedr=1.  left end. Therefore, we must solve the steady-state case of

In this 1D theory, the right- and left-moving densities of the 1D Boltzmann equation$) and(6),
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(3 +3.Py +34P,, (10 sinr{L\/Eacl

&X 2R(%a) (C z) 0 18)
= —— e —— 18

P a

2:_Esrpl‘f'(Esr‘i‘Ea)pL (11 T(Ea) ° \lzac

oX D

subject to the boundary conditiorB;(0)=1, P(L)=0. If This is one form of the generalized Landauer result we

we solve this homogeneous linear system, Ra(x) and  haye been looking for. Notice that in E6L8) we have a

P2(x), the outgoing fluxes at the right and left end are, bytranscendental equation fBrso we cannot get, explicitiyp

definition, the multiple-scattering transmission and reflectiorgs g function of T/R,3,). However, the important point

coefficients T=Py(L), R=P,(0), respectively. here is that the inverse problem, the valueRIfT as an
Trivially, the solutions forP,(x) and P,(x), satisfying  explicit function of ©,3,) given by Eq.(18), is exactin 1D.

the boundary conditions, are given in terms of the eigenvalugve can now get from Eq.18) some limiting cases.

of the coefficient matrix}\E\/Eaer 23,r3,. The solutions (i) For conduction electrons in a met&,=0. In this

for P,(x) andP,(x) are thus written as case Eq(18) reduces to the Landauer result:
_ i _ T(O
b (X):)\cosr[)\(L X))+ (S +2)sinf A (L—x)] D=Lc(—), T(0)+R(0)=1. (19
1 N COSHAL) + (S +3,)sinh(AL) ; 2R(0)
(12 (i) For neutrons, in the moderator of a nuclear reactor

. . 2 <
3. sin A (L=x)] with weak absorptionl.<3 ,c/D<1. We get now, from Eq.

— (18), a small correction, by absorption, to the Landauer re-
P2(x) N coshAL) + (2 +2)sinh(AL) (13 sult:
With these solutions, Boltzmann’s multiple-scattering co- T(X,) 1
efficients defined a¥=P,(L), R=P,(0) are given by = C2R(Ea) TS, T(Za) +R(Za)<L.
+
N 1 LEaZR(Ea)

T(Xa)= N coshAL) +(Z¢r +2,)sinh(AL)’ (14 20
(iii) For photons, in a turbid medium with strong absorp-

3.¢rsinh(AL) tion, L?3 ,c/D> 1. In this limit we get, again from E418),

R(Za)= 1 COSHAL) + (3 +3.)sinhAL) (19  an implicit equation foD:

-1
For the particular case af ,=0, Eqgs.(14) and (15) be- T(Za) ~2| /L_ A /DEa ex;{ —L A /Eac).
come 2R(Z,) DX, c D
(21)
T(0)= ——=—, R(0)= 2! , (16) As we can see, in the general form f(_)r the ra&id give_n _
1+3gL 1+24L by Eq.(18), even though we have the simplest expression in

o ... terms of 0,X,), we still have a transcendental equation for
where, as expected, the mass conservation is well Sat'Sf'efﬁe diffusion coefficienD. Therefore, if at the end we still

T(0)+R(0)=1. On the other hand, having any amount of haye to resort to numerical calculations to obt@inas a
absorption £,>0), obviously in Egs.(14) and (15 the  fynction of (T/R,S,), then it is clear that Eq(18) is not a
mass conservation is not satisfied and we ha{&.)  wise choice for the generalized Landauer result. This is be-

+R(2,)<1. cause in Eq(18) we need the experimental knowledge of
both coefficients T,R). Therefore, it is better to have a
IV. GENERALIZED LANDAUER EQUATION single-scattering coefficient, let us sdyas a function of

. (D,%,), and have another form of the generalized Landauer
~ We now proceed to obtain, from the results of the precedregylt. Indeed, the transmission coeffici@rtan be rewritten
ing sections, what we may call thgeneralized Landauer gg

equation:a relation betweenl,> ., T,R). For this purpose
we now take the ratio of both coefficients in Eq$4) and
(15) to get

2.C
RS Sar snHL\SZH25,3, ] - T(2a.D)= Cos'{ - ]
T(Za) B2+25g3, '

coefficients(14) and(15), Eq. (17) is the simplest expression

we can get in terms ofY, ,2 ). Substituting now théposi- 1
tive definite factor 254 =c/D—3,=0 obtained from the + 2 S ¢ - (22
Boltzmann local diffusion coefficient9) into Eq. (17), we a

finally get D

Notice that from the individual expression for both scattering r{ S.C -1
sinf L

D

C
Ea'f‘s
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From this equation we get the following two limiting C(L)=T(2,,D)~exp(—3,L). (24)
cases.
(i) Zero absorption, which yields again the Landauer re-
sult
cL T(0) These equations give the surprising result that two appar-
D(T,2,=0)= 2 1-T0) (23 ently uncorrelated results, Landauer and Lambert-Beer, are

in fact just opposite limits of the same equation: the gener-
(i) Strong absorption, where we have now the Lambertalized Landauer equatiof22). Now we have a single theo-
Beer equation for the absorption coefficient, retical frame for both results.
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