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Generalized Landauer equation: Absorption-controlled diffusion processes
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The exact expression of the one-dimensional Boltzmann multiple-scattering coefficients, for the passage of
particles through a slab of a given material, is obtained in terms of the single-scattering cross section of the
material, including absorption. The remarkable feature of the result is that for multiple scattering in a metal,
free from absorption, one recovers the well-known Landauer result for conduction electrons. In the case of
particles, such as neutrons, moving through a weak absorbing media, Landuer’s formula is modified due to the
absorption cross section. For photons, in a strong absorbing media, one recovers the Lambert-Beer equation. In
this latter case one may therefore speak of absorption-controlled diffusive processes.
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I. INTRODUCTION

One of the problems that has most attracted the atten
of solid state physicists in the past three decades is tha
mesoscopic diffusion in nanostructures. This process is
to the multiple scattering of electrons with the lattice formi
the material. The field was pioneered by Landauer@1#, who
in 1957 obtained his already famous formula for the dif
sion coefficient for conduction electrons in a on
dimensional~1D! solid, namely,

D5cL
T

2R
, ~1!

wherec is the Fermi velocity for the electrons andL is the
length of the solid. The solid, considered as a single comp
scattering center, has multiple-scattering transmission an
flection coefficientsT andR, respectively.

Although many of the derivations of Eq.~1! are of a
quantum-mechanical nature@2#, however, the quantum der
vation assumes that the potentials are measured some
tance away from the scatterers and it assumes that this
surement is incoherent, which implies not taking in
account the interference of the incident and the reflec
wave. Once the interference is neglected, the result so
tained can, therefore, also be derived with incoherent
chastic processes as it has been shown several times@3,4#.
Thus, the ratioT/R appearing in Eq.~1! is not a fully
quantum-mechanical result, a fact that has long been re
nized by many authors@5–8#.

However, not all incoherent processes are, necessaril
agreement with classical mechanics. What is surprising is
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fact that Eq.~1! may also be derived from a strictlyclassical
transport equation. Indeed, in the present paper we derive
Landauer result~1! from the 1D version of the Boltzmann
transport equation. This derivation implies that the Landa
result is not only an incoherent, but also aclassicalresult.

On the other hand, it is well known that the Boltzman
transport equation can also be used to study the diffusio
particles in materials having absorption. For example, in
case of photon migration where absorption is strong, astro
mers have long been using the 1D Boltzmann case, unde
name of two stream theory, to study radiation transfer in
stellar atmosphere@9,10#. Another example is the case o
neutrons diffusing with weak absorption in the moderator
a neutron chain reactor. The Boltzmann equation has be
cornerstone in the design of nuclear reactors@11,12#.

For neutrons and photons the presence of an absor
cross section in the diffusion process is rather relevant. A
in fact, for absorption dominated diffusion~photons!, one
would expect that the Lambert-Beer law, which describes
absorptionC of light passing through a slab of material o
sizex, given byC(x)5exp@2ax# and regarded as one of th
basic laws in photochemistry@13,14#, holds true.

In the language of transmission and reflection coefficie
T and R, we know that for conduction electrons, where
absorption is present,T1R51 due to particle conservation
However, in the passage of particles through an absorb
medium,T1R,1 and, in fact, we could define the absor
tion coefficientC at the end of the sample asC(L)[T.

Examination of these facts leads immediately to one qu
tion. Since the processes~i! electrons scattering in a meta
according to the Landauer theory, and~ii ! particle diffusion
in an absorptive medium~photons and neutrons, for ex
ample!, can both be regarded as classical diffusive scatte
processes against fixed targets, namely a Lorentz gas@15#,
the question is, can they be unified within a single theoret
framework?

The purpose of the present paper is to offer anaffirmative
reply to this question. In fact, we show that both results,
Landauer and Lambert-Beer, are just the opposite limits

-

6180 ©1999 The American Physical Society



xa
rp
re

s
n-
fu

p
Fo
ze
n

ni
lts

a

o

la
an

icr
he

ab

w

w

c
er

c-

of

writ-

d
ion

-
ass.

r-

es
n-
y-

-

ns

he
ngle-

ef-
ne
ime,

e of

PRE 59 6181BRIEF REPORTS
the same general 1D equation, which stems from the e
solution of the Boltzmann transport equation with abso
tion. This general result leads to a formula containing a
lationship between the diffusion coefficientD, the multiple-
scattering coefficientsT and R, and the absorption cros
sectionSa ; we call this general result the ‘‘generalized La
dauer equation.’’ We show that in the absorption-free dif
sion limit it will reduce to the Landauer result Eq.~1!,
whereas in an absorption-dominated process, passage of
tons through matter yields the Lambert-Beer equation.
neutrons with weak absorption, for example, the generali
Landauer equation gives an explicit—absorptio
dependent—correction to Eq.~1!.

The new feature of this calculation is that it gives a u
fied picture of what one might think are unrelated resu
and we can visualize them now as particular cases of
absorption-controlled diffusion process.

II. BOLTZMANN’S TRANSPORT EQUATION

Let us consider Boltzmann’s transport equation free
external forces@11#,

F1

c

]

]t
1V–gradr 1Ss1SaG f ~r ,V,t !

5E dV8 f ~r ,V8,t ! Ss~V8→V!. ~2!

Heref is the distribution of independent,monoenergeticpar-
ticles moving in a homogeneous and isotropic medium. E
tic collisions are only against fixed targets. The const
speed is denoted byc, andV is a unit vector in the direc-
tion of motion of the particles.Ss(V8→V) denotes the
macroscopic scattering cross section defined as the m
scopic, or atomic, differential cross section multiplied by t
density of target atoms. For isotropic scattering,Ss(V8
→V) depends only on the deflection angleu0 between the
V8 andV directions, that is, cosu0[V•V8. The quantities
Ss and Sa denote the total macroscopic scattering and
sorption cross sections, respectively,

Ss[E dV Ss~V8→V!.

In order to derive a generalized Landauer equation,
need the one-dimensional~1D! version of the Boltzmann
transport equation. A strict 1D transport theory has only t
directions of motion: ‘‘right’’ and ‘‘left.’’ This means that
the 1D velocity directionV has only two components11 or
21, written (1,2) for short. Then, the scattering cross se
tion has only two possibilities: forward or backward scatt
ing u0[(0 or p). We define

t[Ss~1→1 !/Ss5Ss~2→2 !/Ss , ~3!

r[Ss~1→2 !/Ss5Ss~2→1 !/Ss , ~4!

as the microscopic forward and backward~‘‘transmission’’
and ‘‘reflection’’! single-scattering probabilities, respe
tively. These probabilities are properly normalizedt1r 51.
In this 1D theory, the right- and left-moving densities
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particles are denoted byP1(x,t)[ f (x,1,t) and P2(x,t)
[ f (x,2,t), respectively. Along thex axis, the 1D Boltz-
mann equation then becomes a system of two equations
ten as

F1

c

]

]t
1

]

]xGP15Ssr ~P22P1!2SaP1 , ~5!

F1

c

]

]t
2

]

]xGP25Ssr ~P12P2!2SaP2 . ~6!

Both Eqs.~5! and ~6! are called the two stream theory, an
are used by astrophysicists in connection with radiat
transfer@9,10#.

The set of equations~5! and~6! may be rewritten in terms
of two new functions: the total densityn(x,t)[P1(x,t)
1P2(x,t) and its associated currentJ(x,t)/c[P1(x,t)
2P2(x,t). The new set of equivalent equations is

]n

]t
1

]J

]x
52cSan, ~7!

J52
c

Sa12Ssr
F ]n

]x
1

1

c2

]J

]t G . ~8!

Equation ~7! is simply the 1D continuity equation; it ex
presses, due to absorption, the nonconservation of m
Equation ~8! is the 1D Maxwell-Cattaneo equation@16#,
which is clearly a departure from Fick’s law and has impo
tant physical consequences. The]J/]t term is the distinctive
property of the mesoscopic diffusion regime; for short tim
it describes the correct ballistic diffusion regime with co
stant velocity, and for long times it leads to the hydrod
namic diffusion regime. Equations~7! and ~8!, which are
exactin 1D, are only the ‘‘P1 approximation’’ of the spheri-
cal harmonic expansion method in 3D@11,12#.

Equation~8! shows that the 1D Boltzmann diffusion co
efficient is given by the well known result

D5
c

Sa12Ssr
. ~9!

We call this diffusion coefficient alocal result, because it
involves microscopic single-scattering cross sectio
(Sa ,Ssr ). The Landauer equation~1!, on the other hand, is a
nonlocal result since it involves coefficients (T,R) for mul-
tiple scattering in the bulk of the solid. Therefore, to get t
generalized Landauer equation we need to express the si
scattering cross sections (Sa ,Ssr ) as a function of the
multiple-scattering coefficients (T,R).

III. BOLTZMANN’S MULTIPLE-SCATTERING
COEFFICIENTS WITH ABSORPTION

Let us consider a slab of scattering material of sizeL. To
find the multiple-scattering transmission and reflection co
ficients (T,R) of the whole slab, we proceed just as is do
in quantum mechanics; we assume a steady-state reg
with a unitary incoming flux of particles incidentonly at the
left end. Therefore, we must solve the steady-state cas
the 1D Boltzmann equations~5! and ~6!,
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]P1

]x
52~Ssr 1Sa!P1 1SsrP2 , ~10!

]P2

]x
52SsrP11~Ssr 1Sa!P2 , ~11!

subject to the boundary conditions:P1(0)51, P2(L)50. If
we solve this homogeneous linear system, forP1(x) and
P2(x), the outgoing fluxes at the right and left end are,
definition, the multiple-scattering transmission and reflect
coefficients:T[P1(L), R[P2(0), respectively.

Trivially, the solutions forP1(x) and P2(x), satisfying
the boundary conditions, are given in terms of the eigenva
of the coefficient matrixl[ASa

212SsrSa. The solutions
for P1(x) andP2(x) are thus written as

P1~x!5
l cosh@l~L2x!#1~Ssr 1Sa!sinh@l~L2x!#

l cosh~lL !1~Ssr 1Sa!sinh~lL !
,

~12!

P2~x!5
Ssr sinh@l~L2x!#

l cosh~lL !1~Ssr 1Sa!sinh~lL !
. ~13!

With these solutions, Boltzmann’s multiple-scattering c
efficients defined asT[P1(L), R[P2(0) are given by

T~Sa!5
l

l cosh~lL !1~Ssr 1Sa!sinh~lL !
, ~14!

R~Sa!5
Ssr sinh~lL !

l cosh~lL !1~Ssr 1Sa!sinh~lL !
. ~15!

For the particular case ofSa50, Eqs.~14! and ~15! be-
come

T~0!5
1

11SsrL
, R~0!5

SsrL

11SsrL
, ~16!

where, as expected, the mass conservation is well satis
T(0)1R(0)51. On the other hand, having any amount
absorption (Sa.0), obviously in Eqs.~14! and ~15! the
mass conservation is not satisfied and we haveT(Sa)
1R(Sa),1.

IV. GENERALIZED LANDAUER EQUATION

We now proceed to obtain, from the results of the prec
ing sections, what we may call thegeneralized Landaue
equation:a relation between (D,Sa ,T,R). For this purpose
we now take the ratio of both coefficients in Eqs.~14! and
~15! to get

R~Sa!

T~Sa!
5

Ssr sinh@LASa
212SsrSa #

ASa
212SsrSa

. ~17!

Notice that from the individual expression for both scatter
coefficients~14! and~15!, Eq. ~17! is the simplest expressio
we can get in terms of (Sa ,Ssr ). Substituting now the~posi-
tive definite! factor 2Ssr 5c/D2Sa>0 obtained from the
Boltzmann local diffusion coefficient~9! into Eq. ~17!, we
finally get
n

e

-

d:
f

-

2R~Sa!

T~Sa!
5S c

D
2SaD sinhFLASac

D
G

ASac

D

. ~18!

This is one form of the generalized Landauer result
have been looking for. Notice that in Eq.~18! we have a
transcendental equation forD so we cannot get, explicitly,D
as a function of (T/R,Sa). However, the important poin
here is that the inverse problem, the value ofR/T as an
explicit function of (D,Sa) given by Eq.~18!, is exactin 1D.
We can now get from Eq.~18! some limiting cases.

~i! For conduction electrons in a metal,Sa50. In this
case Eq.~18! reduces to the Landauer result:

D5Lc
T~0!

2R~0!
, T~0!1R~0!51. ~19!

~ii ! For neutrons, in the moderator of a nuclear reac
with weak absorption,L2Sac/D!1. We get now, from Eq.
~18!, a small correction, by absorption, to the Landauer
sult:

D'Lc
T~Sa!

2R~Sa!

1

11LSa

T~Sa!

2R~Sa!

, T~Sa!1R~Sa!,1.

~20!

~iii ! For photons, in a turbid medium with strong absor
tion, L2Sac/D@1. In this limit we get, again from Eq.~18!,
an implicit equation forD:

T~Sa!

2R~Sa!
'2FA c

DSa
2ADSa

c G21

expS 2LASac

D D .

~21!

As we can see, in the general form for the ratioR/T given
by Eq. ~18!, even though we have the simplest expression
terms of (D,Sa), we still have a transcendental equation f
the diffusion coefficientD. Therefore, if at the end we stil
have to resort to numerical calculations to obtainD as a
function of (T/R,Sa), then it is clear that Eq.~18! is not a
wise choice for the generalized Landauer result. This is
cause in Eq.~18! we need the experimental knowledge
both coefficients (T,R). Therefore, it is better to have
single-scattering coefficient, let us sayT as a function of
(D,Sa), and have another form of the generalized Landa
result. Indeed, the transmission coefficientT can be rewritten
as

T~Sa ,D !55 coshFLASac

D
G

1
1

2
S Sa1

c

D
D sinhFLASac

D
G

ASac

D
6

21

. ~22!
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From this equation we get the following two limitin
cases.

~i! Zero absorption, which yields again the Landauer
sult

D~T,Sa50!5
cL

2

T~0!

12T~0!
. ~23!

~ii ! Strong absorption, where we have now the Lambe
Beer equation for the absorption coefficient,
-

t-

C~L ![T~Sa ,D !'exp~2SaL !. ~24!

These equations give the surprising result that two app
ently uncorrelated results, Landauer and Lambert-Beer,
in fact just opposite limits of the same equation: the gen
alized Landauer equation~22!. Now we have a single theo
retical frame for both results.
,
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